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Abstract. In this paper we consider a single-server queueing model with finite buffer
capacity and the multiple vacation policy, in which jobs occur according to a Poisson
process and are being processed individually with a general-type cumulative distri-
bution function of the service time. Every time when the system empties, a service
station initializes a multiple vacation period. During this period successive generally-
distributed vacations are being started one by one until at least one packet accumu-
lated in the buffer is detected at the completion epoch of one of them. A compact
formula for the Laplace transform of the distribution of the time to the first buffer
overflow is found. The result is written using a recurrent sequence, defined by means
of “input” characteristics of the system. Numerical examples are attached as well.
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1. Motivation

Obviously, a phenomenon of packet (job) losses as a natural consequence of buffer
saturation is a typical one for packet-oriented computer and telecommunication net-
works. The more in-depth investigation of this process requires knowledge of some
stochastic characteristics, like e.g. distributions of successive buffer overflow periods
and times of reaching them. The loss ratio, defined as the part of the total number of
transmitted packets, which are lost due to the buffer saturation, is not sufficient here.

The review of steady-state results for finite-buffer queueing models can be found
e.g. in [7, 8] and [17]. In [11] distributions of three different characteristics for the
system with the arrival stream of packets “filtered” by an active queue management
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(AQM for short) algorithm are derived. The time-dependent (transient) analysis of
a finite-buffer queue can be found e.g. in [12], where the departure counting process
in the system with batch Poisson arrivals is considered.

One can find analytical results for the cumulative distribution function (CDF for
short) of the time to the buffer overflow in single-server queues without any additional
policy limiting the access to the service station e.g. in [4, 5] and [6]. In particular, in
[4] the system with batch Poisson arrivals and constant processing times is analyzed.
In [5] the closed-form representation for the distribution of the time to the first buffer
overflow is obtained in the model with BMAP-type input stream. Results for the
MMPP-type arrival flow can be found in [6]. Some other results for the loss process
and buffer saturation problem are given e.g. in [10] and [15]. In [10] the representation
for the joint transform of the busy period and numbers of packets being processed
and lost during the busy period is derived for the model with phase-type key “input”
distributions. In [15] the formula for the distribution of the number of buffer overflows
during one busy period is found for Markovian packet arrivals.

In this paper we deal with CDF of the time to the first buffer overflow in a finite-
buffer model operating under the multiple vacation policy. Applying analytical ap-
proach based on the idea of embedded Markov chain, continuous total probability
law, integral equations and linear algebra, we obtained the explicit closed-form rep-
resentation for the Laplace transform (LT for short) of the CDF of the time to the
first buffer overflow, conditioned by the number of packets accumulated in the buffer
at the starting moment.

The article is organized as follows. In Section 2 we give a precise mathematical
description of the considered queueing model and state some auxiliary results. In
Section 3 we present main analytical results for the CDF of the time to the first
buffer overflow. Section 4 contains some numerical examples and in the last Section
5 we give conclusions and final remarks.

2. Preliminaries

We consider an M/G/1/N -type queueing system in which packets enter according
to a Poisson process with rate λ and are being processed individually, with a generally-
distributed service time with CDF F (·) with Laplace-Stieltjes transform (LST for
short) f(·). The FIFO service discipline is assumed. The number of packets permitted
to be simultaneously present in the system is bounded by a non-random value N, so
we have N−1 places in the buffer queue and one place in processing. Every time when
the system empties, the service station initializes a multiple vacation period, during
which successive vacations are being started one by one until at least one packet
accumulated in the buffer is detected at one of them. We assume that all vacations
are i.i.d. (=independent and identically distributed) random variables with common
general-type CDF V (·) with LST v(·).

Let X(t) be the number of packets present in the system at the time t. Denote by
βn the time to the first overflow of the buffer under condition that the buffer initially
(at the starting time t = 0) contains exactly n packets. In other words, we can define
βn as
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βn = inf {t > 0 : X(t) = N |X(0) = n}, (1)

where 0 ≤ n ≤ N − 1.
The approach we propose for the study of the CDF of the time to buffer overflow

leads to a system of linear equations. To find the solution in a compact form we utilize
the following result [13] (see also [14]):

Theorem 2.1. Let (ak)
∞

k=0, a0 6= 0, and (φk)
∞

k=1 be sequences.
Each solution of the following system of equations:

n−1
∑

k=−1

ak+1xn−k − xn = φn, n ≥ 1, (2)

can be written in the following form:

xn = CRn +

n
∑

k=1

Rn−kφk, n ≥ 1, (3)

where C is a certain constant independent on n and (Rk), k = 0, 1, ..., is a specific-
type sequence connected with the given sequence (ak) and defined recursively in the
following way:

R0 = 0, R1 = a−1
0 , Rk+1 = R1(Rk −

k
∑

i=0

ai+1Rk−i), k ≥ 1. (4)

3. Analytical results

3.1. Integral equations for conditional CDF of time to buffer

overflow

Let

∆n(t)
def
= P{βn > t}, t ≥ 0, 0 ≤ n ≤ N − 1, (5)

i.e. ∆n(·) is the tail of the conditional CDF of the time to the first buffer overflow.
Assume firstly that the system is empty (n = 0) at the starting epoch t = 0. In

such a case the multiple vacation period begins at this time. Let us note that then
one can distinguish three mutually separable random events:

• the first packet enters before time t and the multiple vacation period also ends
before t (we denote this event by L1(t));

• the first packet enters before time t and the multiple vacation period ends after t
(we denote this event by L2(t));

• the first packet arrives after time t (we denote this event by L3(t)).
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Evidently, we have

∆0(t) =

3
∑

i=1

∆0,i(t), (6)

where

∆0,i(t) = P{β0 > t , Li(t)}, i = 1, 2, 3. (7)

Observe that for successive functionals ∆0,i(t) the following formulae can be derived:

∆0,1(t) = λ

∫ t

x=0

e−λxdx

∞
∑

i=0

∫ x

y=0

dV i∗(y)

∫ t−y

u=x−y

N−2
∑

k=0

[

λ(u + y − x)
]k

k!
×

× e−λ(u+y−x)∆k+1(t− u− y)dV (u), (8)

∆0,2(t) = λ

∫ t

x=0

e−λxdx

∞
∑

i=0

∫ x

y=0

V (t− y)

N−2
∑

k=0

[

λ(t− x)
]k

k!
e−λ(t−x)dV i∗(y) (9)

and

∆0,3(t) = e−λt, (10)

where V (x)
def
= 1− V (x).

Hence taking (6) under consideration, we get

∆0(t) = λ

∫ t

x=0

e−λxdx
∞
∑

i=0

∫ x

y=0

dV i∗(y)

∫ t−y

u=x−y

N−2
∑

k=0

[

λ(u + y − x)
]k

k!

× e−λ(u+y−x)∆k+1(t− u− y)dV (u)

+ λ

∫ t

x=0

e−λxdx
∞
∑

i=0

∫ x

y=0

V (t− y)
N−2
∑

k=0

[

λ(t− x)
]k

k!
e−λ(t−x)dV i∗(y) + e−λt. (11)

Assume now that the system is not empty at the beginning (n > 0). Utilizing
the formula of total probability with respect to the first departure epoch after the
opening of the system, by the fact that departure epochs are Markov moments in the
considered queueing system, we obtain the following equation:

∆n(t) =
N−n−1
∑

i=0

∫ t

0

∆n+i−1(t− y)
(λy)i

i!
e−λydF (y) + F (t)

N−n−1
∑

i=0

(λt)i

i!
e−λt, (12)

where 1 ≤ n ≤ N − 1 and F (t)
def
= 1 − F (t). The first summand on the right side of

(12) relates to the situation in which the first departure occurs before time t, while
the second one – to the opposite case.
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3.2. The corresponding system for LTs

Define

δj(s)
def
=

∫

∞

0

e−st∆j(t)dt, Re(s) > 0. (13)

Observe that the following representations hold (compare to (8)):

λk+1

k!

∫

∞

t=0

e−stdt

∫ t

y=0

dV i∗(y)

∫ t

x=y

e−λxdx

∫ t−y

u=x−y

(u+ y − x)ke−λ(u+y−x)

×∆k+1(t− u− y)dV (u) =
λk+1

k!

∫

∞

t=0

e−stdt

∫ t

y=0

e−λydV i∗(y)

∫ t−y

u=0

e−λu

×∆k+1(t− u− y)dV (u)

∫ u+y

x=y

(u+ y − x)kdx

=
λk+1

(k + 1)!

∫

∞

t=0

e−stdt

∫ t

y=0

e−λydV i∗(y)

∫ t−y

u=0

e−λuuk+1∆k+1(t− u− y)dV (u)

=
λk+1

(k + 1)!

∫

∞

y=0

e−(λ+s)ydV i∗(y)

∫

∞

u=0

e−(λ+s)uuk+1dV (u)

×

∫

∞

t=u+y

e−s(t−u−y)∆k+1(t− u− y)dt = vi(λ+ s)gk+1(s)δk+1(s), (14)

where

gj(s)
def
=

λj

j!

∫

∞

u=0

e−(λ+s)uujdV (u). (15)

Similarly, we get (compare to (9))

λk+1

k!

∫

∞

t=0

e−stdt

∫ t

x=0

e−λxdx

∫ x

y=0

V (t− y)

[

λ(t− x)
]k

k!
e−λ(t−x)dV i∗(y)

λk+1

k!

∫

∞

t=0

e−(λ+s)tdt

∫ t

y=0

V (t− y)dV i∗(y)

∫ t

x=y

(t− x)kdx

=
λk+1

(k + 1)!

∫

∞

t=0

e−(λ+s)tdt

∫ t

y=0

V (t− y)(t− y)k+1dV i∗(y)

=
λk+1

(k + 1)!

∫

∞

y=0

e−(λ+s)ydV i∗(y)

∫

∞

t=y

V (t− y)(t− y)k+1dt

= vi(λ+ s)gk+1(s), (16)

where

gj(s)
def
=

λj

j!

∫

∞

0

e−(λ+s)uujV (u)du. (17)
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By (11), (14) and (16) we obtain

δ0(s) =
1

1− v(λ + s)

N−2
∑

k=0

(

gk+1(s)δk+1(s) + gk+1(s)
)

+
1

λ+ s

=
1

1− v(λ+ s)

N−1
∑

k=1

(

gk(s)δk(s) + gk(s)
)

+
1

λ+ s
. (18)

If we define

aj(s)
def
=

∫

∞

0

e−(λ+s)t (λt)
j

j!
dF (t) (19)

and

bj(s)
def
=

∫

∞

0

e−(λ+s)t

j
∑

i=0

(λt)i

i!
F (t)dt, (20)

we can transform (12) as follows:

δn(s) =

N−n−1
∑

i=0

ai(s)δn+i−1(s) + bN−n−1(s), 1 ≤ n ≤ N − 1. (21)

3.3. The main analytical result

If we denote

HN−n(s)
def
= δn(s), 0 ≤ n ≤ N − 1, (22)

then the system (21) can be rewritten as follows:

n−1
∑

i=−1

Hn−i(s)ai+1(s)−Hn(s) = φn(s), 1 ≤ n ≤ N − 1, (23)

where

φn(s) = H1(s)an(s)− bn−1(s). (24)

Moreover, equation (18) can be reformulated in the following way:

HN (s) =
1

1− v(λ + s)

N−1
∑

k=1

(

gk(s)HN−k(s) + gk(s)
)

+
1

λ+ s
. (25)

To obtain the solution of the system (23) and (25), we can apply Theorem 2.1 as
(23) suits (2) with unknown functions Hn(s) and all coefficients depending on the
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variable s. Hence, to find the solution we can utilize the formula (3). Moreover, since
the number of equations in (23) is finite, we can use the equation (25) as a specific-type
boundary condition allowing to eliminate C = C(s).

Indeed, we have, firstly,

Hn(s) = C(s)Rn(s) +

n
∑

k=1

Rn−k(s)φk(s), n ≥ 1, (26)

where (compare to (4))

R0(s) = 0, R1(s) = a−1
0 (s),

Rk+1(s) = R1(s)
(

Rk(s)−

k
∑

i=0

ai+1(s)Rk−i(s)
)

, k ≥ 1. (27)

For n = 1 from (26) we get

H1(s) = C(s)R1(s). (28)

Similarly, taking n = N in (26), by (24) and (28) we obtain

HN (s) = C(s)RN (s) +

N
∑

k=1

RN−k(s)
[

C(s)R1(s)ak(s)− bk−1(s)
]

. (29)

Simultaneously, substituting (26) into (25) yields

HN (s) =
1

1− v(λ+ s)

N−1
∑

k=1

{

gk(s)
[

C(s)RN−k(s)

+

N−k
∑

i=1

RN−k−i(s)
(

C(s)R1(s)ai(s)− bi−1(s)
)

]

+ gk(s)

}

+
1

λ+ s
. (30)

Comparing the right sides of (29) and (30) we get

C(s) = A(s)B(s), (31)

where

A(s)
def
=

1

1− v(λ + s)

N−1
∑

k=1

(

gk(s)− gk(s)

N−k
∑

i=1

RN−k−i(s)bi−1(s)
)

+

N
∑

k=1

RN−k(s)bk−1(s) +
1

λ+ s
(32)
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and

B(s)
def
=

[

RN (s) +R1(s)

N
∑

k=1

RN−k(s)ak(s)−
1

1− v(λ + s)

N−1
∑

k=1

gk(s)

×
(

RN−k(s) +R1(s)

N−k
∑

i=1

RN−k−i(s)ai(s)
)

]

−1

. (33)

From (22), (24), (26) and (31), we deduce the following:

Theorem 3.1. The representation for LT of the tail of the CDF of the time to the first
buffer overflow in the M/G/1/N -type queueing model with multiple vacation policy is
following:

δn(s) =

∫

∞

0

e−st∆n(t)dt = A(s)B(s)
(

RN−n(s) +R1(s)

N−n
∑

k=1

RN−n−k(s)ak(s)
)

−

N−n
∑

k=1

RN−n−k(s)bk−1(s), (34)

where 1 ≤ n ≤ N − 1, Re(s) > 0 and the formulae for ak(s), bk(s), Rk(s), A(s) and
B(s) are given in (19), (20), (27), (32) and (33), respectively.

4. Numerical examples

In this section we present some numerical examples illustrating theoretical results,
for which we discuss the dependence of the distribution of the time to the first buffer
overflow on server vacation duration, intensity of arrivals, processing speed and initial
buffer state. Assume that packets of average sizes 500 B arrive at the node of WSN
(wireless sensor network) according to a Poisson process with rate λ and are being
processed individually, according to FIFO service discipline, with exponentially dis-
tributed service time with mean µ−1. For numerical calculations we also assume that
a multiple vacation period consists of independent exponentially distributed server
vacations, each one with mean 1/λv. First we use the formula (35) in Theorem 3.1 to
obtain explicit representations for Laplace transforms of the time to the first buffer
overflow. Next, we use procedures of numerical Laplace transform inversion, based
on algorithms of Abate-Choudhury-Whitt presented in [1] and the Gaver-Stehfest
algorithm proposed in [2, 3] (which is a combination of two approaches given in [9]
and [16]). The results are illustrated in appropriate figures or tables. We get the mean
value of the time to buffer overflow for fixed set of system parameters from the evident
relationship, that is

E{βn} = δn(0) =

∫

∞

0

∆n(t)dt. (35)
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4.1. Impact of initial buffer state

In this example we investigate the dependence of∆n(t) on the initial buffer state for
n = 0, 7, 11 and 14, where the maximum system capacity equals N = 15, the arrival
rate λ = 25 ∗ 104 packets/s (corresponding to intensity 1 Gb/s), the processing rate
µ = 3 ∗ 105 packets/s (corresponding to intensity 1.2 Gb/s), and the server vacations
are exponentially distributed with parameter λv = 6 ∗ 105. The results are presented
in Fig. 1.

Fig. 1. ∆n(t) in dependence on the initial buffer state n

4.2. Impact of arrival intensity

Here we visualize the dependence of ∆n(t) on the intensity of packet arrivals for
λ = 10 ∗ 104, 15 ∗ 104, 20 ∗ 104, 25 ∗ 104 and 30 ∗ 104 packets/s (corresponding to
intensities 400 Mb/s, 600 Mb/s, 800 Mb/s, 1 Gb/s and 1.2 Gb/s, respectively), where
the initial buffer state n = 1, the maximum system capacity N = 15, the processing
rate µ = 2 ∗ 105 packets/s (corresponding to intensity 800 Mb/s), and the parameter
of exponentially distributed server vacation λv = 6 ∗ 105. The results are given in
Fig. 2.

4.3. Impact of processing rate

We investigate here the impact of the service speed on the time to buffer overflow
for three different exponential processing rates µ = 20 ∗ 104, 25 ∗ 104 and 30 ∗ 104

packets/s (corresponding to 800 Mb/s, 1 Gb/s and 1.2 Gb/s, respectively), where the
initial buffer state n = 2, the maximum system capacity equals N = 15, the arrival
rate λ = 25 ∗ 104 packets/s (corresponds to intensity of 1 Gb/s), and λv = 6 ∗ 105.
The results are presented in Fig. 3.
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Fig. 2. ∆n(t) in dependence on the arrival intensity λ

Fig. 3. ∆n(t) in dependence on the processing rate µ

4.4. Impact of intensity of arrivals and service speed

In this example we visualize the dependence of ∆n(t) on two factors: the arrival
rate λ = 15 ∗ 104, 20 ∗ 104 and 25 ∗ 104 packets/s (600 Mb/s, 800 Mb/s, 1 Gb/s) and
the processing rate µ = 20∗104, 25∗104 and 30∗104 packets/s (800 Mb/s, 1 Gb/s, 1.2
Gb/s), where besides n = 1, N = 5, and λv = 6∗105. In calculations we used two dif-
ferent algorithms of numerical Laplace transform inversion (Abate-Choudhury-Whitt
[1] and Gaver-Stehfest [2]). We also measured the time complexity for both algorithms.
The average time spent on a single evaluation of Abate-Choudhury-Whitt algorithm
is approximately equal to 34 seconds. It turns out that the Gaver-Stehfest algorithm
is much faster, because the average time spent on single evaluation is approximately
equal to 0.015 second. The results of comparison of the two methods are presented in
Fig. 4.
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Fig. 4. ∆n(t) in dependence on the arrival intensity λ and processing rate µ

4.5. Impact of vacation duration

In this example we visualize the dependence of the conditional CDF of the time
to the first buffer overflow on the single server vacation duration, taking λv = 10 ∗
104, 15∗104 and 30∗104. The remaining system parameters are λ = 10∗104 packets/s
(corresponding to intensity 400 Mb/s), n = 1, N = 15, and µ = 25 ∗ 104 packets/s
(corresponding to 1 Gb/s). The results are given in Fig. 5. In Fig. 6 we present similar
results for an alternative intensity 700 Mb/s of input stream of packets.

Fig. 5. ∆n(t) in dependence on λv for input stream intensity 400 Mb/s
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Fig. 6. ∆n(t) in dependence on λv for input stream intensity 700 Mb/s

4.6. Impact of arrival intensity and service rate on mean

time to buffer overflow

In this example we visualize in the form of a table the average time to buffer
overflow for every possible initial buffer states n, in dependence on different input
and output link intensities and the maximum system capacity N = 15, taking the
server vacation parameter λv = 6 ∗ 105. The results are presented in Table 1.

4.7. Impact of initial buffer state on mean time to buffer

overflow

Here we state the average time to buffer overflow for every possible initial buffer
states n, in dependence on the vacation parameter λv = 10∗104, 15∗104 and 30∗104,
for the arrival rate λ = 10 ∗ 104 packets/s (corresponding to intensity 400 Mb/s), the
maximum system capacity N = 15 and the processing rate µ = 25 ∗ 104 packets/s
(1 Gb/s). The results are given in Table 2. The case of intensity 700 Mb/s (λ =
175 ∗ 103) is visualized in Table 3.
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Table 1
Average time to buffer overflow for N = 15

Average time to buffer overflow

n Input 800 Mb/s, Output 800 Mb/s Input 1 Gb/s, Output 800 Mb/s
0 0.000575 sec. 0.000216 sec.

1 0.000572 sec. 0.000214 sec.

2 0.000563 sec. 0.000208 sec.

3 0.000550 sec. 0.000199 sec.

4 0.000532 sec. 0.000188 sec.
5 0.000508 sec. 0.000175 sec.

6 0.000480 sec. 0.000160 sec.

7 0.000447 sec. 0.000145 sec.

8 0.000408 sec. 0.000129 sec.
9 0.000365 sec. 0.000111 sec.

10 0.000317 sec. 0.000094 sec.

11 0.000263 sec. 0.000076 sec.

12 0.000205 sec. 0.000059 sec.

13 0.000142 sec. 0.000038 sec.
14 0.000073 sec. 0.000019 sec.

Table 2
Average time to buffer overflow for N = 15 and λ = 10 ∗ 104 packets/s

Average time to buffer overflow

n λv = 10 ∗ 104 λv = 15 ∗ 104 λv = 30 ∗ 104

0 0.188577 sec. 1.14968 sec. 5.1784 sec.

1 0.188584 sec. 1.14968 sec. 5.1784 sec.

2 0.188589 sec. 1.14969 sec. 5.17838 sec.

3 0.188594 sec. 1.14968 sec. 5.17834 sec.
4 0.188596 sec. 1.14966 sec. 5.17822 sec.

5 0.188591 sec. 1.14959 sec. 5.1779 sec.

6 0.188568 sec. 1.14942 sec. 5.17709 sec.

7 0.1885 sec. 1.14897 sec. 5.17506 sec.

8 0.188322 sec. 1.14785 sec. 5.16997 sec.
9 0.187865 sec. 1.14503 sec. 5.15725 sec.

10 0.186712 sec. 1.13797 sec. 5.12544 sec.

11 0.183821 sec. 1.12032 sec. 5.04591 sec.

12 0.176582 sec. 1.07617 sec. 4.84706 sec.
13 0.158476 sec. 0.965802 sec. 4.34993 sec.

14 0.1132 sec. 0.689861 sec. 3.1071 sec.
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Table 3
Average time to buffer overflow for N = 15 and λ = 175 ∗ 103 packets/s

Average time to buffer overflow

n λv = 10 ∗ 104 λv = 15 ∗ 104 λv = 30 ∗ 104

0 0.0028589 sec. 0.00455093 sec. 0.00678827 sec.

1 0.00286598 sec. 0.00455455 sec. 0.00678732 sec.

2 0.00287038 sec. 0.00455401 sec. 0.00678024 sec.

3 0.00287095 sec. 0.00454752 sec. 0.00676442 sec.

4 0.00286605 sec. 0.00453254 sec. 0.0067361 sec.
5 0.00285334 sec. 0.00450542 sec. 0.00668993 sec.

6 0.00282947 sec. 0.00446096 sec. 0.00661826 sec.

7 0.00278965 sec. 0.00439174 sec. 0.00651016 sec.

8 0.00272704 sec. 0.00428713 sec. 0.00635002 sec.
9 0.0026319 sec. 0.00413198 sec. 0.00611552 sec.

10 0.00249026 sec. 0.00390463 sec. 0.00577482 sec.

11 0.00228221 sec. 0.00357412 sec. 0.00528239 sec.

12 0.00197928 sec. 0.00309625 sec. 0.0045732 sec.

13 0.00154081 sec. 0.00240786 sec. 0.00355435 sec.
14 0.000908714 sec. 0.00141874 sec. 0.00209315 sec.

5. Conclusions

In this paper a single-channel queueing model with finite buffer capacity operating
under the multiple vacation policy is investigated. It is assumed that jobs occur ac-
cording to a Poisson process and are being processed individually with a general-type
CDF of the service time, according to the FIFO discipline. Each time when the system
becomes empty, the service station begins a multiple vacation period, during which
successive independent and generally-distributed vacations are being initialized, until
the buffer is not empty at the end of one of them. By using analytical approach based
on the idea of the embedded Markov chain, the formula of total probability, integral
equations and linear algebra, a closed-form representation for the LT of the distri-
bution of time to the first buffer overflow is found. The impact of different “input”
system parameters, namely vacation duration, intensity of arrivals, processing rate
and initial buffer state is analyzed in numerical examples.
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